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Abstract - This paper describes a radial mode match-
ing atgoritbm for the S-parameter computation of circular
ridged waveguide (CRW) discontinuitks. By shaping the
ridge section conically, the coupling integrals in the dis-
continuity region can be solved analytically, This approach
avoids the use of a mixed coordinate system and leads to
a fast algorithm which is suitable for computer-aided de-
sign of CRW components like filters, septum polarizers and

waveguide transformers. A comparison between measured

and computed S-parameters shows exeellent agreement. To

illustrate the capability of the algorithm, a circular double
ridged waveguide filter in a below cutoff waveguide and a
CRW transformer have been optimized.

I Introduction

Application of circular ridged waveguides (CRW) ean be
found in many components like filters, matching networks,
polarizers and circulators. In the design of thesecomponents
it is important to characterize accurately the transition be-
tween the empty circular waveguide and the CRW section,
as well as the interaction between subsequent discontinu-
ites. For various types of CRW’S an eigenvalue analysis
has been performed in [5,6] using a radial mode matching
technique. However, this is only the first step towards field
theory based design of CRW components. To complete
the analysis presented in [5,6], this paper introduces an S-
parameter analysis of circular double ridge discontinuities
in which the interaction between fundamental and higher
order modes is included. Our objectives is a fast and aeeu-
rate algorithm which can be implemented in an optimization
routine for the design of CRW components. For this reason
the ridges are shaped conically (Figure 1) to avoid a mixed
coordinate system at the discontinuity between the empty
and the ridged waveguide section. In this case the coupling

between the fundamental TE and higher order TE and TM

modes can be solved analytically which is not possible in

a mixed coordinate system. The general procedure to ex-
traet the S-parameters is based on the radial mode matching
technique in propagation direction of the wave.

Although normally the ridges in a CRW are assumed to
be rectangular (to simulate tuning screws), a conical ridge
shape, such as that considered in this paper (Figure 1), does
not deteriorate the electrical performance of the component
nor does it complicate the fabrication, but the numerical
modelling of the ridge section simplifies. In some appli-
cations it was even found that the shape of tbe ridges (for
ridge thickness < 200pm), whether rectangular or conical,
is irrelevant in praetise [1].

To illustrate the efficiency of the numerical approach pre-
sented in this paper we have optimized a three section cir-
cular double ridged filter in a below-cutoff waveguide and
also a three section waveguide transformer.

II Theory

A radial mode matching method is developed to calculate
the generalized scattering matrix of a discontinuity between
an empty circular waveguide and a double ridged circular
waveguide. The cross section of such a discontinuity is
shown in Figure 1. Since the T.E1I mode is the fundamental
mode of propagation a magnetic and electric wall symmetry
can be used. The electric and magnetic vector potential func-
tions in the empty circular waveguide for such a symmetry
can be written as follows

na=l 73=1,3

The coefficients P and Q are the power normalization con-
stantsand areobtained by setting the magnitude of the power
carried in each of the modes to unity. The values of M and
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N depend on the number of TE and TM modes used in the
evaluation of the generalized scattering matrix. The electric
and magnetic vector potentials in the ridged circular waveg-
uide subsections (1) and (2), for a ridge thickness of 20 can
be written as follows

where J denotes the Bessel functions and N the Naumann
functions and ~) their derivatives; 1= ~

r=l n=l,3

R N2

4(2’) = ~ ~ Dm[N,(k:’’a)J,(k:”p) -

The procedure to determine the eigenvalues and the ampli-
tude coefficients in the above equations has been described
in [5,6]. The amplitude coefficients are once again power
normalized so that the magnitude of the power carried in
each of the modes is unity. For thin ridges, N 1 is chosen
to be equal to IV2 and these values along with R depend
on the number of TE and TM modes necessary to achieve
convergence of the S-parameters.

From the potential functions described above in the two
regions of discontinuity the electric and magnetic fields in
each of the regions of Figure 1 can be derived. At the in-
terface of the two regions (.z = O), the continuity of the
tangential components E and H-field of the incident and re-
flected waves is applied. Using the orthogonality property
of the modes, the continuity condition results in four sets
of equations relating the unknown wave amplitudes of the
incident(F) and reflected waves. For instance, the con-
tinuity of tangential components of E-field results in the two
sets of equations given below:

(F’h + ~z’) = [LH~](Frrh + B’”)

(F’e + l?”) = [LEE] (FJ1’ + B’l’) +

[LEM](FT1’ + B’”)

where [L] matrices give the coupling between the fundamen-
tal and higher order TE and TM modes. The matrix equa-
tions can be rearranged suitably [4] and inverted to yield the

generalized scattering matrix of the discontinuity between
empty circular waveguide and a ridged circular waveguide.

Structures like evanescent-mode filters also involve a
step discontinuity between two axially symmetric circular
waveguides. This procedure has been explained elsewhere
in literature and will not be repeated here. By cascading
generalized scattering matrices [2]-[4] at various step dis-
continuities the generalized S-matrix of matching networks
and evanescent-mode filters are obtained.

III Results

Before designing filters and impedance transformers, the al-
gorithm developed in this paper is tested lirst with respect
to convergence and measured results for individual discon-
tinuities. Since an iris step from a large to a small circular
waveguide is part of the evanescent filter of Figure 5, this
transition has been tested tirst and the results are given in Ta-
ble 1. Good agreement was found with measurements given
in [8]. To obtain this good agreement 40 TE and TM modes
are necessary in the larger waveguide while 20 are necessary
in the smaller. For a transition between a circular waveguide
and a circular double ridged waveguide up to 40 TE and
TM modes are necessary on both sides of the discontinu-
ity (Figure 2). Since for this discontinuity no measurement
results are available in the open literature, we have fabri-
cated the two ridges by cutting a thin brass plate (thickness
125pm) and inserted them into a split-block circular waveg-
uide housing. As illustrated in Figure 3, both measured and
calculated results are in good agreement. The slight devi-
ations are probably due to the difficulty in positioning both
ridges symmetrically into the split-block housing and ap-
proximation in the calculation by a conically shaped ridge
with angular thickness of 0 = 1 degree.

On the basis of the above investigation, we have then
designed a three section Chebyshev transformer in a double
ridged circular waveguide. The initial design was based on
the characteristic impedance of the fundamental mode. The
optimization with respect to the lengths of the transformer
sections was performed with 20 modes and a final analysis
was done with 40 TE and TM modes. The results are shown
in Figure 4. As a second example we have designed an
evanescent-mode filter (Figure 5). The lengths of the ridge
and evanscent sections are altered until an optimum filter
response is obtained. During the optimization 30 modes are
considered while in the final analysis 40 modes are included.

The optimization routine utilized in this work is basedon
a very reliable practical Quasi-Newton aIgorithm described
in [7]. This algorithm uses a slightly modified version of
Fletcher’s inexact line seamh.
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IV Conclusions

This paper has introduced a radial mode matching technique
for field theory design of circular ridged waveguide compo-
nents like filters and impedance transformers, Fundamental
and higher order mode interaction at and between discontinu-
ities has been taken into account. Good agreement between
theoretical and measured results have been found.
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l%ble 1
Calculated and measured S parameters
(radius of input/output section=O.50175
radius of the iris=O.25 in; f=9.O GHz)

Thickness

(inch)

0.005
0.008
0.050
0.1OO
0.200
0.500
1.000

0.005
0.008
0.050
0.100
0.200
0.500
1.000

Reflection Coefficient S11

calculated Measured
Magni- Phase Magni- Phase
tude (o) tude (o)

0.837 150.5 0,855 150.5
0.881 151.1 0.866 151.7
0.938 156.5 0.927 155.3
0.968 159.3 0.956 158.1
0.990 161.6 0.981 160.6
0.999 162.6 0.993 161.1
1.000 162.6 0.995 161,5

Transmission Coefficient su

0.488 60.5 0.465 56.8

0.474 61.1 0.451 59.3

0.345 66.4 0.330 62.6

0.250 69.3 0.240 65.1
0.138 71.6 0.134 67.1
0.025 72.6 0.026 69.0
0.002 72.6 0.002 70.1

(c)

Figure 1: Discontinuity regions (a) Circular waveguide (re-
gion I) (b) Ridged circular waveguide (region II) (c) Longi-
tudinal cross-section
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Figure 2: Magnitude of S12of a discontinuity from a circular
waveguide to ridged circular waveguide, a=2mm, b=l .5mm,
f=55GHz
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Figure 3: S-parameters in dB of a discontinuity from circu-
lar waveguide to ridge circular waveguide of finite length,
a=4mm, b=2mm, ridge thickness =125pm (0 = 1 degree),
l=l,lmm, + merisured, - calculated
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Figure 4: Response of an optimum 3-section ridged circular
waveguide transformer, O = 5degree, dimensions in cm,
section 1: a=2, b=l.7, 11=1.633, section 2 a=2, b=l.13,
12=1.351, section 3: a=2, a=O.7, 13=1.191, section 4: a=2
b=o.5

l—

Figure 5: Response of an optimum 3-resonator evanescent-
mode circular waveguide filter, dimensions in mm, raidus
of input/output section=4, radius of evanescent sec-
tion(a)=2, radius of resonator section(b)=0,4, 0 = 5deg,
lel=le4=l.152, lrl=lr3=l.679, le2=le3=4.423, lr2=l.91 1
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